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Abstract

By directly solving the Navier equations of elasticity, we obtain the discrete Cosserat eigenvalues and eigenvectors
for the ®rst boundary value problem of a cylindrical shell. The discrete Cosserat spectrum approaches ~o n � ÿ2
from both ~o n<ÿ 2 and ~o n > ÿ2 sides. It also reduces to a condensation point ~o n � ÿ2 with in®nite multiplicity
for a cylinder or a cylindrical rigid inclusion in an in®nite space. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cosserat and Cosserat (1898) showed that in a domain V the homogeneous Navier equations under
homogeneous boundary displacement

Du� orr � u � 0 in V �1a�

u � 0 on @V �1b�
where o � �l� m�=m � 1=�1ÿ 2v�, l and m are the LameÂ constants, v the Poisson's ratio and @V the
boundary of V, admit non-trivial solution when o takes some special values ~o . Obviously the Cosserat
spectrum ~o lies outside the range of the uniqueness theory in elasticity (Knops and Payne, 1971). The
Cosserat spectrum theory was fully developed by Mikhlin (1973) who proved the completeness and
orthogonality of the Cosserat eigenfunctions and represented the displacement ®eld u for an
inhomogeneous problem as a summation of the Cosserat eigenfunctions.

For the ®rst boundary value problem (boundary value problem of displacement) in 3-D, the
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eigenvectors are complete in the Hilbert space H 1 and form three orthogonal subspaces, namely, the
discrete eigenvectors ~un, the eigenvectors ~u �ÿ1�n corresponding to the eigenvalue of in®nite multiplicity
~o � ÿ1 and the eigenvectors ~u �1�n corresponding to the eigenvalue of in®nite multiplicity ~o � ÿ1. The
solution of the inhomogeneous problem

Du� orr � u � ÿF

m
in V �2a�

u � 0 on @V �2b�
admits the representation (Mikhlin, 1973)

u �
X
n

8<:
�

f , ~u
�ÿ1�
n

�
1� o

~u
�ÿ1�
n �

�
f , ~u �1�n

�
~u �1�n � ~o n

~o n ÿ o

ÿ
f , ~un

�
~un

9=; �3a�

whereÿ
f , ~u

� � 1

m

�
V

F � ~u dV �3b�

and dV is the volume element in 3-D.
The solution of the problem with inhomogeneous boundary displacement

Du� orr � u � 0 in V �4a�

u � ub on @V �4b�
admits the representation (Mikhlin, 1973)

u � u0 �
X
n

o ~o n

o ÿ ~o n

�div u0, div ~un � ~un �5�

where u0 is a vector harmonic function and satis®es the boundary condition eqn (4b).
For the secondary boundary value problem (boundary value problem of traction) in 3-D, the

eigenvectors are complete in the Hilbert space H 1 and form three orthogonal subspaces, namely
~un, ~u �ÿ1�n and ~u �1�n . The solution of the inhomogeneous problem

Du� orr � u � ÿF

m
in V �6a�

t � tb on @V �6b�
admits the representation (Mikhlin, 1973)

u �
X
n

8<:2

�
f , ~u

�ÿ1�
n

�
1� o

~u
�ÿ1�
n �

�
f , ~u �1�n

�
~u �1�n � 1ÿ ~o n

o ÿ ~o n

ÿ
f , ~un

�
~un

9=; �7a�

where
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ÿ
f , ~u

� � 1

m

� �
V

F � ~u dV�
�
@V

tb � ~u dA

�
�7b�

and dV and dA are the volume and surface elements in 3-D, respectively.
The representation theorems for 2-D elastic problems take simpler forms. For the ®rst boundary value

problem in a 2-D domain A, the Cosserat spectrum consists of two isolated points, ~o � ÿ1, ÿ 1, and
a discrete spectrum ~o n. In some cases the discrete spectrum may reduce to a condensation point ~o n �
ÿ2 with in®nite multiplicity. The system of all the Cosserat eigenvectors is orthogonal and complete in
the Hilbert space H 1,e in which�

A

�r � ~u �2
re

dA<1 for all e > 0 �8�

where dA is the area element in 2-D. The boundary value problem of displacement

Du� orr � u � ÿF

m
in A �9a�

u � 0 on @A �9b�
admits the representation eqn (3a) while the inner product is de®ned byÿ

f , ~u
� � 1

m

�
A

F � ~u dA �10�

For the second boundary value problem in 2-D, the Cosserat spectrum consists of only three points,
~o � ÿ1, ÿ 1, 0. The system of the Cosserat eigenvectors is orthogonal and complete in the Hilbert
space H 1,e. It follows that the solution of the second boundary value problem in 2-D

Du� orr � u � ÿF

m
in A �11a�

t � tb on @A �11b�
admits the representation

u �
X
n

(
2

�
f , ~u

�ÿ1�
n

�
1� o

~u
�ÿ1�
n �

�
f , ~u �1�n

�
~u �1�n � 1

o

�
f , ~u

�0�
n

�
~u
�0�
n

)
�12a�

whereÿ
f , ~u

� � 1

m

� �
A

F � ~u dA�
�
@A

tb � ~u dS

�
�12b�

and dA and dS are the elements of A and @A, respectively.
Thus, knowing the Cosserat eigenvectors for a given geometry allows us to solve elastic problems for

any body force and boundary loading. Markensco� and Paukshto (1998), Liu et al. (1998), Markensco�
et al. (1998) have applied the Cosserat spectrum theory to elasticity, thermoelasticity and viscoelasticity
problems.

The Cosserat eigenvectors may not all appear in a representation for a speci®c loading. For example,
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we only need to know the discrete Cosserat eigenvectors ~un for a harmonic temperature loading in
thermoelasticity, while we need both ~un and ~u �ÿ1� for a non-harmonic temperature loading (Liu et al.,
1998). In order to solve 2-D problems with cylindrical body shapes, we need to ®nd the pertinent
Cosserat eigenvalues and eigenvectors. For this purpose, in the ®rst part of this paper, we solve the 2-D
Navier equations and obtain the discrete Cosserat eigenvalues and eigenvectors for the ®rst boundary
value problem of a cylindrical shell. These eigenvalues and eigenvectors reduce to those for a solid
cylinder (inner problem) and a cylindrical rigid inclusion (outer problem) in an in®nite space. In the
second part, we will present the Cosserat subspace ~u �ÿ1� for a solid cylinder and a cylindrical rigid
inclusion. We also present an example of a non-harmonic heat source in the presence of a cylindrical
rigid inclusion. The results show that the sequence of the Cosserat eigenvectors ~u �ÿ1� converges fast, thus
providing a practical way to solve problems for general body force and boundary loading.

2. A cylindrical shell

The discrete Cosserat eigenvalue ~o n and eigenvector ~un for the ®rst boundary value problem satisfy
the homogeneous Navier equations with homogeneous boundary conditions

D ~un � ~o nrrrrrr � ~un � 0 in A �13a�

~un � 0 on @A �13b�
Taking the divergence on eqn (13a) yields

�1� ~o n�D�rrr � ~un� � 0 �14�
Equation (14) means that, since the discrete Cosserat eigenvalue ~o n 6� ÿ1, rrr � ~un is any harmonic

function. For 2-D cylindrical bodies, the complete collection of harmonic functions in a polar
coordinate system �r, y� is (Zachmanoglou and Thoe, 1976)

rrr � ~un �
8<: 1, rn cos ny, rn sin ny

n � 1, 2, . . .
log r, rÿn cos ny, rÿn sin ny

�15�

For a speci®c geometry, one needs to choose appropriate harmonic functions from eqn (15) which
satisfy the requirement of the Hilbert space H 1,e. The appropriate ~un is then substituted back into eqn
(13) to solve for ~o n and ~un. The Cosserat eigenvector ~un of the ®rst boundary value problem in 2-D
should also be normalized according to (Mikhlin, 1973)�

A

�rrr � ~un�2 dA � ÿ 1

~o n
�16�

We consider a cylindrical shell r1ErEr2, where r1 and r2 are the inner and outer radius of the
cylindrical shell, respectively. All the harmonic functions represented by eqn (15) satisfy the requirement
in the Hilbert space H 1,e.

Write the Cosserat eigenvector ~un in the form of separation of variables

~un � unrer � unyey � R1n�r�Q1n�y�er � R2n�r�Q2n�y�ey �17�
The boundary conditions eqn (13b) now take the form
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Rin�r1 � � Rin�r2� � 0 i � 1, 2 �18�
According to eqn (14), rrr � ~un must be a general harmonic function, thus, it must be of the form

rrr � ~un �
"
An

�
r

r2

�n

�Bn

�
r1
r

�n
#

cos ny �19�

Substituting eqn (17) into eqn (19) yields

rrr � ~un � dR1n

dr
Q1n � R1n

r
Q1n � R2n

r

dQ2n

dy
�
"
An

�
r

r2

�n

�Bn

�
r1
r

�n
#

cos ny �20�

To make the variables separable, we choose Q1n � cos ny and Q2n � sin ny. Consequently, eqn (20)
becomes

dR1n

dr
� R1n

r
� nR2n

r
� An

�
r

r2

�n

�Bn

�
r1
r

�n

�21�

Equation (17) should also satisfy the Navier equations, eqn (13a), which now take the following forms

d2R1n

dr2
� 1

r

dR1n

dr
ÿ
ÿ
n2 � 1

�
R1n

r2
ÿ 2nR2n

r2
� n ~o n

 
An

rnÿ1

rn2
ÿ Bn

rn1
rn�1

!
� 0 �22a�

d2R2n

dr2
� 1

r

dR2n

dr
ÿ
ÿ
n2 � 1

�
R2n

r2
ÿ 2nR1n

r2
ÿ n ~o n

 
An

rnÿ1

rn2
� Bn

rn1
rn�1

!
� 0 �22b�

The sum and di�erence of eqns (22a) and (22b) give

d2�R1n � R2n�
dr2

� 1

r

d�R1n � R2n�
dr

ÿ �n� 1�2�R1n � R2n�
r2

ÿ 2n ~o nBnr
n
1

rn�1
� 0 �23�

d2�R1n ÿ R2n�
dr2

� 1

r

d�R1n ÿ R2n�
dr

ÿ �nÿ 1�2�R1n ÿ R2n�
r2

� 2n ~o nAnr
nÿ1

rn2
� 0 �24�

The solution of eqn (23) under boundary condition eqn (18) is given by

R1n � R2n � 1

2
~o nBn

 
C1n

rn�1

rn2
� C2n

rn�21

rn�1
ÿ rn1

rnÿ1

!
�25�

where

C1n � �r1=r2�n
�
1ÿ �r1=r2�2

���
1ÿ �r1=r2�2�n�1�

�
�26a�

C2n �
�
1ÿ �r1=r2�2n

���
1ÿ �r1=r2�2�n�1�

�
�26b�

The solution of eqn (24) under boundary condition eqn (18) is given by

W. Liu, X. Markensco� / International Journal of Solids and Structures 37 (2000) 1165±1176 1169



R11 ÿ R21 � 1

2
~o 1A1

 
C31r2 ÿ C41r2 log

�
r

r2

�
ÿ r2

r2

!
�27a�

R1n ÿ R2n � 1

2
~o nAn

 
C3n

rnÿ1

rnÿ22

� C4n
rn1
rnÿ1
ÿ rn�1

rn2

!
n > 1 �27b�

where

C31 � 1 �28a�

C41 �
�
1ÿ �r1=r2�2

��
log�r1=r2� �28b�

C3n �
�
1ÿ �r1=r2�2n

��h
1ÿ �r1=r2�2�nÿ1�

i
n > 1 �28c�

C4n � �r1=r2�n
�
1ÿ �r1=r2�ÿ2

��h
1ÿ �r1=r2�2�nÿ1�

i
n > 1 �28d�

Simple algebraic operations on eqns (25) and (27) give

Ri1 � ~o 1B1

4

�
C11

r2

r2
� C21

r31
r2
ÿ r1

�
2

~o 1A1

4

�
C31r2 ÿ C41r2 log

r

r2
ÿ r2

r2

�
i � 1, 2 �29a�

Rin � ~o nBn

4

 
C1n

rn�1

rn2
� C2n

rn�21

rn�1
ÿ rn1

rnÿ1

!

2
~o nAn

4

 
C3n

rnÿ1

rnÿ22

� C4n
rn1
rnÿ1
ÿ rn�1

rn2

!
n > 1, i � 1, 2 �29b�

where the positive and negative sign apply when i � 1 and i � 2, respectively. We now obtain the
Cosserat eigenvector ~un � unrer � unyey as follows�

u1r
u1y

�
� ~o 1

4

�
B1

�
C11

r2

r2
� C21

r31
r2
ÿ r1

�
2A1

�
C31r2 ÿ C41r2 log

r

r2
ÿ r2

r2

���
cos y
sin y

�
�30a�

(
unr

uny

)
� ~o n

4

24Bn

 
C1n

rn�1

rn2
� C2n

rn�21

rn�1
ÿ rn1

rnÿ1

!

2An

 
C3n

rnÿ1

rnÿ22

� C4n
rn1
rnÿ1
ÿ rn�1

rn2

!35( cos ny

sin ny

)
n > 1 �30b�

where the positive and negative sign apply to unr and uny, respectively.
To ®nd the Cosserat eigenvalue, we substitute eqn (29) into eqn (21)
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~o 1B1

2

�
2C11

r

r2
ÿ r1

r

�
ÿ ~o 1A1

4

�
C41

r2
r
� 2r

r2

�
� A1

r

r2
� B1

r1
r

�31a�

~o nBn

2

�
�n� 1�C1n

rn

rn2
ÿ rn1

rn

�
ÿ ~o nAn

2

�
�nÿ 1�C4n

rn1
rn
� rn

rn2

�
� An

rn

rn2
� Bn

rn1
rn

n > 1 �31b�

Equating the coe�cients of the same power of r in eqn (31), we have

ÿ r2
2r1

~o 1C41A1 � � ~o 1 � 2�B1 �32a�

� ~o 1 � 2�A1 � 2 ~o 1C11B1 �32b�

ÿ�nÿ 1� ~o nC4nAn � � ~o n � 2�Bn n > 1 �32c�

� ~o n � 2�An � �n� 1� ~o nC1nBn n > 1 �32d�

Equation (32) gives the Cosserat eigenvalue ~o n and An=Bn as follows

� ~o 1 � 2�2� ÿ ~o 2
1

1ÿ �r1=r2�2�
1� �r1=r2�2

�
log�r1=r2�

�33a�

� ~o n � 2�2� �n2 ÿ 1� ~o 2
n

�r1=r2�2n
�
�r1=r2 �2��r1=r2�ÿ2ÿ2

��
1ÿ �r1=r2�2�n�1�

�h
1ÿ �r1=r2�2�nÿ1�

i n > 1 �33b�

�
A1

B1

�2

� ÿ4�r1=r2�
2 log�r1=r2�

1ÿ �r1=r2�4
�34a�

�
An

Bn

�2

� n� 1

nÿ 1

�r1=r2�2
h
1ÿ �r1=r2�2�nÿ1�

i
1ÿ �r1=r2�2�n�1�

n > 1 �34b�

To determine the coe�cients An and Bn, we also need to use the normalization condition eqn (16). By
substituting eqn (19) into eqn (16), we have

A2
1r

2
2

4

"
1ÿ

�
r1
r2

�4
#
� A1B1

r1
r2

ÿ
r22 ÿ r21

�ÿ B2
1r

2
1 log

�
r1
r2

�
� ÿ 1

p ~o 1
�35a�

A2
nr

2
2

2�n� 1�
�
1ÿ �r1=r2�2�n�1�

�
� AnBn�r1=r2�n

ÿ
r22 ÿ r21

�
� B2

nr
2
1

2�nÿ 1�
h
1ÿ �r1=r2�2�nÿ1�

i
� ÿ 1

p ~o n
n > 1 �35b�

To derive the second series of the Cosserat eigenvalues and eigenvectors, we choose from eqn (15) the
harmonic function
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rrr � ~un �
"
An

�
r

r2

�n

�Bn

�
r1
r

�n
#

sin ny �36�

where n � 1, 2, 3, . . .. Proceeding in a similar manner, we obtain the discrete Cosserat eigenvalues ~o n

and eigenvectors ~un � unrer � unyey as follows

� ~o 1 � 2�2� ÿ ~o 2
1

1ÿ �r1=r2�2�
1� �r1=r2�2

�
log�r1=r2�

�37a�

� ~o n � 2�2� �n2 ÿ 1� ~o 2
n

�r1=r2�2n
�
�r1=r2�2��r1=r2�ÿ2ÿ2

��
1ÿ �r1=r2�2�n�1�

��
1ÿ �r1=r2�2�nÿ1�

� n > 1 �37b�

�
u1r
u1y

�
� ~o 1

4

�
A1

�
C31r2 ÿ C41r2 log

r

r2
ÿ r2

r2

�
2B1

�
C11

r2

r2
� C21

r31
r2
ÿ r1

���
sin y
cos y

�
�38a�

(
unr

uny

)
� ~o n

4

24An

 
C3n

rnÿ1

rnÿ22

� C4n
rn1
rnÿ1
ÿ rn�1

rn2

!

2Bn

 
C1n

rn�1

rn2
� C2n

rn�21

rn�1
ÿ rn1

rnÿ1

!35( sin ny

cos ny

)
n > 1 �38b�

where the coe�cients Cin, i � 1, . . . , 4, are still given by eqns (26) and (28), An and Bn are still given by
eqns (34) and (35).

To derive the third Cosserat eigenvalue and eigenvector, we repeat the above procedures with

rrr � ~u � A� B log
r

r2
�39�

We write ~u in the form of separated variables

~u � urer � uyey � R1�r�Q1�y�er � R2�r�Q2�y�ey �40�
The boundary conditions are now expressed by

Ri�r1� � Ri�r2� � 0 i � 1, 2 �41�
Substituting eqn (40) into eqn (39), we have�

dR1

dr
� R1

r

�
Q1 � R2

r

dQ2

dy
� A� B log

r

r2
�42�

Eqn (42) shows that, in order to make the variables separable, we need to choose Q1 � 1 and
�dQ2=dy� � 1 or Q2 � y� c, where c is an arbitrary constant. Consequently, eqn (42) becomes

dR1

dr
� R1

r
� R2

r
� A� B log

r

r2
�43�

Eqn (40) should also satisfy the Navier equations, eqn (13a), which now take the form
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d2R1

dr2
� 1

r

dR1

dr
ÿ R1

r2
ÿ 2R2

r2
� ~oB

r
� 0 �44a�

d2R2

dr2
� 1

r

dR2

dr
ÿ R2

r2
� 0 �44b�

The solution of eqn (44) subjected to boundary condition eqn (41) is

R1 � C1r� C2
r21
r
� ~o B

4
rÿ ~o B

2
r log r �45a�

R2 � 0 �45b�
where

C1 � ~o B

4

"
2 log r1 ÿ 2 log�r1=r2�

1ÿ �r1=r2�2
ÿ 1

#
�46a�

C2 � ~o B log�r1=r2�
2
�
1ÿ �r1=r2�2

� �46b�

Substituting eqn (45) into eqn (40), we obtain the Cosserat eigenvector

~u �
�
C1r� C2

r21
r
� ~o B

4
rÿ ~o B

2
r log r

�
er �47�

To ®nd the Cosserat eigenvalue, substituting eqn (45) into eqn (43), we have

�Aÿ B log r2 � � � ~o � 1�B log r � 0 �48�
Equating the coe�cients of eqn (48), we obtain the Cosserat eigenvalue ~o and the ratio A/B

~o � ÿ1 �49�

A=B � log r2 �50�
The coe�cients A and B are also subjected to the normalization condition eqn (16). Substituting eqn

(50) into eqn (39) yields rrr � ~u � B log r, which is substituted into eqn (16), we have

r22
�
log2 r2 ÿ log r2 � 1=2

�
ÿ r21

�
log2 r1 ÿ log r1 � 1=2

�
� 1=�pB� �51�

In two limiting cases, the discrete Cosserat eigenvalues ~o n and eigenvectors ~un for the ®rst boundary
value problem of a cylindrical shell reduce to those for a solid cylinder and a cylindrical rigid inclusion
in an in®nite space, which are presented in the next two sections.

3. A solid cylinder

If r1 � 0 and r2 � r0, the cylindrical shell reduces to a solid cylinder with radius r0. Since ~un has to
satisfy the requirement in the Hilbert space H 1,e, only the functions 1, rn cos ny, rn sin ny need to be
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considered. The sets of the discrete Cosserat eigenvalues ~o n, eigenvectors ~un and divergences div ~un are

~o n � ÿ2 �52�

~un � An

2

rn�1

rn0

�
1ÿ r20

r2

�
�cos nyer ÿ sin nyey � �53�

rrr � ~un � An

�
r

r0

�n

cos ny �54�

and

~o n � ÿ2 �55�

~un � An

2

rn�1

rn0

�
1ÿ r20

r2

�
�sin nyer � cos nyey � �56�

rrr � ~un � An

�
r

r0

�n

sin ny �57�

where n � 1, 2, . . ., and

A2
n �

n� 1

pr20
�58�

It is not di�cult to show that the choice rrr � ~un � 1 does not generate another Cosserat eigenfunction.

4. A cylindrical rigid inclusion

If r1 � r0 and r2 � 1, the cylindrical shell reduces to a cylindrical rigid inclusion with radius r0. In
this case, only the functions rÿn cos ny, rÿn sin ny are needed. The sets of the discrete Cosserat
eigenvalues ~o n, eigenvectors ~un and divergences div ~un are

~o n � ÿ2 �59�

~un � Bn

2

rn0
rnÿ1

�
1ÿ r20

r2

�
�cos nyer � sin nyey� �60�

rrr � ~un � Bn

�
r0
r

�n

cos ny �61�

and

~o n � ÿ2 �62�
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~un � Bn

2

rn0
rnÿ1

�
1ÿ r20

r2

�
�sin nyer ÿ cos nyey� �63�

rrr � ~un � Bn

�
r0
r

�n

sin ny �64�

where n = 2, 3, . . . , and

B2
n �

nÿ 1

pr20
�65�

5. Discussion

For a cylindrical shell, we obtained eqn (33) for the discrete spectrum ~o n and eqn (34) for An=Bn.
These equations are quadratic, therefore, there are two solution of ~o n, ~o nEÿ 2 and ~o neÿ 2 and two
solutions of An/Bn, An/Bn < 0 and An/Bn>0, for each value of r1=r2. Eqn (32) shows that An and Bn

should have the same sign if ~o nEÿ 2, or vice versa.
We rewrite the discrete Cosserat eigenvalues in the form

~o �i�n �
2

ÿ12 ����
fn

p i � 1, 2 �66a�

where the positive and negative sign apply when i= 1 and i = 2, respectively and

f1 � ÿ 1ÿ �r1=r2�2�
1� �r1=r2 �2

�
log�r1=r2 �

�66b�

Table 1

The discrete Cosserat spectrum ~o �1�n for a cylindrical shell

n r1=r2 � 0:0001 r1=r2 � 0:001 r1=r2 � 0:01 r1=r2 � 0:1 r1=r2 � 0:2

1 ÿ2.98287136 ÿ3.22830241 ÿ3.74492566 ÿ5.75461322 ÿ8.24144796
2 ÿ2.00034647 ÿ2.00347011 ÿ2.03524980 ÿ2.41644234 ÿ3.02765208
3 ÿ2.00000006 ÿ2.00000056 ÿ2.00056579 ÿ2.05761916 ÿ2.24391020
4 ÿ2.00000000 ÿ2.00000001 ÿ2.00000775 ÿ2.00769803 ÿ2.06131477
5 ÿ2.00000000 ÿ2.00000010 ÿ2.00097047 ÿ2.01516379
6 ÿ2.00000000 ÿ2.00011715 ÿ2.00364146
7 ÿ2.00001372 ÿ2.00085170
8 ÿ2.00000157 ÿ2.00019508
9 ÿ2.00000018 ÿ2.00004396
10 ÿ2.00000002 ÿ2.00000978
11 ÿ2.00000000 ÿ2.00000215
12 ÿ2.00000047
13 ÿ2.00000010
14 ÿ2.00000002
15 ÿ2.00000000
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fn � �n2 ÿ 1� �r1=r2 �
2n
�
�r1=r2�2��r1=r2�ÿ2ÿ2

��
1ÿ �r1=r2�2�n�1�

�h
1ÿ �r1=r2�2�nÿ1�

i n 6� 1 �66c�

The discrete Cosserat spectrum for a cylindrical shell is a full spectrum from both ~o �1�n Eÿ 2 and
~o �2�n eÿ 2. As n 41, ~o �1�n 4ÿ 2 and ~o �2�n 4ÿ 2. There are in®nite eigenvalues that approach the
condensation point ~o � ÿ2. The discrete spectrum ~o �1�n and ~o �2�n represented in eqn (66) with di�erent
values of r1=r2 are calculated to the accuracy 10ÿ8. Results are shown in Tables 1 and 2.

At two limiting cases, r140 (solid cylinder) or r241 (cylindrical rigid inclusion), the Cosserat
discrete spectrum reduces to a condensation point ~o n � ÿ2 with in®nite multiplicity.
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