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Abstract

By directly solving the Navier equations of elasticity, we obtain the discrete Cosserat eigenvalues and eigenvectors
for the first boundary value problem of a cylindrical shell. The discrete Cosserat spectrum approaches @, = —2
from both @ ,< —2 and @, > —2 sides. It also reduces to a condensation point @, = —2 with infinite multiplicity
for a cylinder or a cylindrical rigid inclusion in an infinite space. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cosserat and Cosserat (1898) showed that in a domain V' the homogeneous Navier equations under
homogeneous boundary displacement

Au+oVV-u=0 inV (1a)

u=0 on dV (1b)

where o = (A+w)/u=1/(1 —2v), 2 and p are the Lamé constants, v the Poisson’s ratio and 9V the
boundary of V, admit non-trivial solution when w takes some special values & . Obviously the Cosserat
spectrum @ lies outside the range of the uniqueness theory in elasticity (Knops and Payne, 1971). The
Cosserat spectrum theory was fully developed by Mikhlin (1973) who proved the completeness and
orthogonality of the Cosserat eigenfunctions and represented the displacement field u for an
inhomogeneous problem as a summation of the Cosserat eigenfunctions.

For the first boundary value problem (boundary value problem of displacement) in 3-D, the
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eigenvectors are complete in the Hilbert space H'! and form three orthogonal subspaces, namely, the
discrete eigenvectors u,, the eigenvectors ftf[l) corresponding to the eigenvalue of infinite multiplicity
o = —1 and the eigenvectors ﬁffo) corresponding to the eigenvalue of infinite multiplicity & = —oo. The

solution of the inhomogeneous problem

F
Au+oVV-u=—-—— inV (2a)
u

u=0 on oV (2b)

admits the representation (Mikhlin, 1973)

~(—1)> -
— <’u” & (=1 ~ (00) ) 7= (00) @ n PR
w= N) Sy i A )i, Ga
where
(f,ﬁ)EHVF.a av (3b)

and dV is the volume element in 3-D.
The solution of the problem with inhomogeneous boundary displacement

Au+oVVv-u=0 in V (4a)

u=u, ondlV (4b)

admits the representation (Mikhlin, 1973)

u=uy+ Z wwfl (div uo, divu,)u, (5)

w—0,

where u is a vector harmonic function and satisfies the boundary condition eqn (4b).

For the secondary boundary value problem (boundary value problem of traction) in 3-D, the
eigenvectors are complete in the Hilbert space H' and form three orthogonal subspaces, namely
it,, 1" and @>. The solution of the inhomogeneous problem

F
Au+oVV-u=—— inV (6a)
u

t=t, on oV (6b)

admits the representation (Mikhlin, 1973)

2( ’affl)) o~
w= Y1 a0 4 (ha)al + — 2 (f )i Ta
1 El 1) f 5100) 5[00)
w

1
~ l1+ow w—w,
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(f,ﬁ)z%[JVFﬁ dV+Lth-12 dA:| (7b)

and dV and dA are the volume and surface elements in 3-D, respectively.

The representation theorems for 2-D elastic problems take simpler forms. For the first boundary value
problem in a 2-D domain 4, the Cosserat spectrum consists of two isolated points, @ = —oo, — 1, and
a discrete spectrum @ ,. In some cases the discrete spectrum may reduce to a condensation point @, =
—2 with infinite multiplicity. The system of all the Cosserat eigenvectors is orthogonal and complete in
the Hilbert space H ' in which

~\2
V.
J ( u) dA<oo for all ¢ >0 8)
4 rl,
where d4 is the area element in 2-D. The boundary value problem of displacement
F .
Au—{-wVVou:—ﬁ in A (9a)
u=0 on 04 (9b)

admits the representation eqn (3a) while the inner product is defined by

(f,a)EHAF.a dA (10)

For the second boundary value problem in 2-D, the Cosserat spectrum consists of only three points,
@ = —oo, —1,0. The system of the Cosserat eigenvectors is orthogonal and complete in the Hilbert
space H . It follows that the solution of the second boundary value problem in 2-D

F
Au+woVV-u=—— in A (11a)
u

t=1t, ondA (11b)

admits the representation

20fa") oo Ll o\
I R P e 2
where
(f,ﬁ)ElU F~i¢dA+J ty -t dS} (12b)
HLJa 24

and d4 and dS are the elements of 4 and 94, respectively.

Thus, knowing the Cosserat eigenvectors for a given geometry allows us to solve elastic problems for
any body force and boundary loading. Markenscoff and Paukshto (1998), Liu et al. (1998), Markenscoff
et al. (1998) have applied the Cosserat spectrum theory to elasticity, thermoelasticity and viscoelasticity
problems.

The Cosserat eigenvectors may not all appear in a representation for a specific loading. For example,
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we only need to know the discrete Cosserat eigenvectors u, for a harmonic temperature loading in
thermoelasticity, while we need both i, and &‘" for a non-harmonic temperature loading (Liu et al.,
1998). In order to solve 2-D problems with cylindrical body shapes, we need to find the pertinent
Cosserat eigenvalues and eigenvectors. For this purpose, in the first part of this paper, we solve the 2-D
Navier equations and obtain the discrete Cosserat eigenvalues and eigenvectors for the first boundary
value problem of a cylindrical shell. These eigenvalues and eigenvectors reduce to those for a solid
cylinder (inner problem) and a cylindrical rigid inclusion (outer problem) in an infinite space. In the
second part, we will present the Cosserat subspace # " for a solid cylinder and a cylindrical rigid
inclusion. We also present an example of a non-harmonic heat source in the presence of a cylindrical
rigid inclusion. The results show that the sequence of the Cosserat eigenvectors a=v converges fast, thus
providing a practical way to solve problems for general body force and boundary loading.

2. A cylindrical shell

The discrete Cosserat eigenvalue @, and eigenvector u, for the first boundary value problem satisfy
the homogeneous Navier equations with homogeneous boundary conditions

Au,+®,VV-u,=0 in A4 (13a)

u,=0 ondA (13b)
Taking the divergence on eqn (13a) yields
I+a0)AV-u,)=0 (14)

Equation (14) means that, since the discrete Cosserat eigenvalue @, # —1, V - u, is any harmonic
function. For 2-D cylindrical bodies, the complete collection of harmonic functions in a polar
coordinate system (r, ) is (Zachmanoglou and Thoe, 1976)

1, r* cos nf, " sin n
V-u,= n=1, 2,... (15)
logr, r™"cosnf, r~" sinnf

For a specific geometry, one needs to choose appropriate harmonic functions from eqn (15) which
satisfy the requirement of the Hilbert space H . The appropriate @, is then substituted back into eqn
(13) to solve for @, and u,. The Cosserat eigenvector u, of the first boundary value problem in 2-D
should also be normalized according to (Mikhlin, 1973)

J (Vi P dd = — (16)
A @y

We consider a cylindrical shell | <r<r;, where r; and r, are the inner and outer radius of the
cylindrical shell, respectively. All the harmonic functions represented by eqn (15) satisfy the requirement
in the Hilbert space H .

Write the Cosserat eigenvector u,, in the form of separation of variables

12,1 = Uprer + Uypey = Rln(r)an(O)er + RZn(r)Q2n(0)e() (17)

The boundary conditions eqn (13b) now take the form
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Rin(rl) = Rin(VZ) =0 i= 1, 2 (18)

According to eqn (14), V - u, must be a general harmonic function, thus, it must be of the form

V-u,= |:A,1<r> +Bn<rl> ]cos no (19)
) r

Substituting eqn (17) into eqn (19) yields

- dR R Ry, d " "
V. u, = o an + ﬁan + :n an = |:An (L) +Bn (r_l> ] cos nt (20)
r r

dr do )

To make the variables separable, we choose Q;, = cos nf and Q,, = sin nf. Consequently, eqn (20)
becomes

dR,, Ry,  nR, nrY
Sy T T = An(i> +Bn('7‘) (21)

dr r 5

Equation (17) should also satisfy the Navier equations, eqn (13a), which now take the following forms

&Ry, 1dR,, (P+1)Ry, 2nRy, . =l -
de + ; dr - 1’2 - 7’2 + nw n An? - Bnm =0 (223)
dsz" 1 dRZ" (n2 + 1)R2n 2ann ~ Vn_l l”l7
a2 i ar 2 —— 2 —noal A i +tBi o) =0 (22b)
The sum and difference of eqns (22a) and (22b) give
dz(Rln + R2n) + ld(Rln + R2n) . (I’l + 1)2(Rln + R2n) . 2nd anr’f -0 (23)
dr? r dr r2 el
dan_Rn lan_Rn _12Rn_Rn 2~}1An’171
(R 2)+_(1 w) (=D (R 2)+ na A" (24)
dr? r dr 72 i
The solution of eqn (23) under boundary condition eqn (18) is given by
1. rn+1 rn+2 rrl’
Rln + R2n = Ewan (Clnﬁ + C2n r;lH.l - rn—l (25)
where
Cin = (r/r2)"[1 = (1 /r2)] /[0 = (i /2?0 (26a)
Co = [1= (r1/r2)"1/[1 = (r1/r2)*"*V] (26b)

The solution of eqn (24) under boundary condition eqn (18) is given by
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1. r r?
Rip — Ry = 7@ 141 <C31V2 — Cqinr log<—> - —> (27a)
r L)
1. rnfl }"’11 I,n+1
Ry, — Ry = Ew nAn <C3nl”g—_2 + C4nrnj - rg n>1 (27b)
where
C31 =1 (28&)
Cyt = [1 = (r1/r2)*]/log(r1/r2) (28b)
Cyn =1 —(rl/rz)zn]/[l —(rl/rg)z("_l)] n>1 (28¢)
Can = (r1/r2)"[1 - (rl/rz)_z]/[l - (rl/rz)ﬂ"—”] n>1 (28d)
Simple algebraic operations on eqns (25) and (27) give
1B 2 3 DA 2
Ry = 212 <C11r + Oy - Vl) iwll<C31V2 — Cyra logl - r) i=12 (29a)
4 s r? 4 oo
@ B, P A
Rm = 4 (Cln? + C2n et =1
Cb,A rnfl 7 rn+l )
i%(canrg—g-i-amrn—ll— . ) n>1,i=12 (29b)

where the positive and negative sign apply when i=1 and i= 2, respectively. We now obtain the
Cosserat eigenvector &, = uy.e, + uygeg as follows

~ T 2 3 2
T P - 7 _rY)][coso
{ulg } = _Bl (Cnr2 + Cy 2 71) +4, <C3112 Cyry 10gr2 r2>:|{ sin 0 } (30a)
Uy _d),, _B c il Le rrl1+2 ”'f
Unp - 4 n 1n rg 2n ph+l =1
rn—l rrl1 rn+1 cos 10
iAn C3nﬁ + C4nﬁ - T . n>1 (30b)
" r " sin n0

where the positive and negative sign apply to u,, and u,g, respectively.
To find the Cosserat eigenvalue, we substitute eqn (29) into eqn (21)
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1B 1A 2
@l 1<2C“1—r—‘)—”1 ‘<C41r—2+—r>=Ali+Blr—‘ (la)
2 oo 4 roon o) r
g Bn n n ind A n 11 n n
il VPR D YNSRI Vo N N IRy S R | 31b)
2 I 2 A " "
Equating the coefficients of the same power of r in eqn (31), we have
r . -
—iwlcmfll =(01+2)B; (32a)
1
(@14+2)A4 =20 ,Ci1 By (32b)
—(n—1)®,C4pA, = (@, +2)B, n>1 (32¢)
(@, +2)4, =+ 1)d,C,B, n>1 (32d)
Equation (32) gives the Cosserat eigenvalue @, and 4, /B, as follows
8 - 1— (ri/r2)?
(@1 42)=—0> (’21/ r2) (33a)
[1+ (r1/r2)* ] log(r1/r2)
2n 2 )
5 5 A ’ _2
(wn+2)2: (f’l2_1)a)’21 (}1/}2) [(rl/r2) +(}"1/}’2) ] n>1 (33b)
[1 _ (r]/},2)2(n+1)]|:1 _ (’,l/rz)Z(n—l):I
A\ 4 ? log(r
(_1) __4n/r) 0g('14/V2) (342)
B, L= (ri/r2)
b 2 2(n—1)
A, n4+101/r2) [1—(1’1/1’2) ]
) = n>1 (34b)
B, n—1 1= (r1/r)*"+)

To determine the coefficients A4, and B,, we also need to use the normalization condition eqn (16). By
substituting eqn (19) into eqn (16), we have

A%I‘% r 4 ry 2 2 2 2 ry 1

—=|1—-(— A1B1—\r; — —Birilogl — ) = —— 35
4 (r2> + A4 1r2(”2 ”1) 171 03(},2> - (35a)
Ai”% 2 BZ}’%

(1= (r1/r2)* ™ 0] + AuBu(r1 /1) (13 = 17) + 52 [l — (rl/rz)Z("_l)] =—

= 1 (35b
2n—1) na)nn> (35b)

2m+1)

To derive the second series of the Cosserat eigenvalues and eigenvectors, we choose from eqn (15) the
harmonic function
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V-u,= |:A,,<r) +Bn<rl> :| sin nf (36)
r r

where n =1, 2, 3,.... Proceeding in a similar manner, we obtain the discrete Cosserat eigenvalues @,
and eigenvectors u, = uy.e, + uyeg as follows

5 - 1—(ry /)

MW _52 37
(COI + ) (< [1 + (,,1/’,.2)2] log(rl/rz) ( a)
(r1/r2)"[(r1/r2)*+(r1 /r2) 2 =2] - (37b)

- 2 (2 )2
(a)n +2) = (n l)wn[l _ (7’1/72)2(n+1)][1 _ (71/1‘2)2(’171)]

~ r 2 2 3 i
Uiy — & — L - L L r_l B oo
U } -4 _A1<C31”2 Cary logrz rz)iBl (Cllrz I m)iHCOSB } o
» n—1 n n+1
Upy @y r di !
=— A C Y C noo_1
Uno } 4 ”< g + 2 )
oo pras o AR sin nf | (38b)
T Dy In rg 2n i+l pn—l cos nf "

where the coefficients C;,, i =1,..., 4, are still given by eqns (26) and (28), 4, and B, are still given by
eqns (34) and (35).
To derive the third Cosserat eigenvalue and eigenvector, we repeat the above procedures with

V~12:A+Blogr1 (39)
2

We write u in the form of separated variables

it = uye, + upeyg = Ri(r)Q1(0)e, + Ra(r)02(0)ey (40)
The boundary conditions are now expressed by

Ri(r))=Ri(r)=0 i=1,2 41)
Substituting eqn (40) into eqn (39), we have

<%+§>Ql+%dd—%:f1+mogé (42)

Eqn (42) shows that, in order to make the variables separable, we need to choose Q; =1 and
(dQ,/d0) =1 or O, = 0 + ¢, where c¢ is an arbitrary constant. Consequently, eqn (42) becomes
dR;, R R

—+—+

=2 — 4+ Blog— (43)
dr r r 2

Eqn (40) should also satisfy the Navier equations, eqn (13a), which now take the form
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&Ry  1dRy R 2R, OB _

ki) 0 44
dr? r dr r? r? r (442)

d’R, 1dR, R,
i Ik S 44b
dr? + r dr 2 (44b)

The solution of eqn (44) subjected to boundary condition eqn (41) is

2 @B @B
R = Clr—i—Czr—l—i—w—r—w—rlogr (45a)
r 4 2
Ry =0 (45b)
where
B 21
¢ =28 210g r, - 2l08O/R) (46)
4 1 —(r1/r2)
L — a)Blog(rl/rzz) (46b)
2[1 = (r1/r2)’]
Substituting eqn (45) into eqn (40), we obtain the Cosserat eigenvector
2 ~ ~
i—lcrioni @B, 9B, ]
u_[Cu—}—Czr—i— R rlogr |e, 47)
To find the Cosserat eigenvalue, substituting eqn (45) into eqn (43), we have
(A—Blogry)+ (& +1)Blogr=0 (48)
Equating the coefficients of eqn (48), we obtain the Cosserat eigenvalue @ and the ratio 4/B
o =-1 (49)
A/B = logr, (50)

The coefficients 4 and B are also subjected to the normalization condition eqn (16). Substituting eqn
(50) into eqn (39) yields V-u = Blog r, which is substituted into eqn (16), we have

r2[log? ry — log ry +1/2] — 2[log? ry — log ri 4+ 1/2] = 1/(nB) (51)

In two limiting cases, the discrete Cosserat eigenvalues @ , and eigenvectors u, for the first boundary
value problem of a cylindrical shell reduce to those for a solid cylinder and a cylindrical rigid inclusion
in an infinite space, which are presented in the next two sections.

3. A solid cylinder

If ry =0 and r, = ry, the cylindrical shell reduces to a solid cylinder with radius ry. Since #, has to
satisfy the requirement in the Hilbert space H !¢, only the functions 1, " cos n0, " sin nl need to be
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considered. The sets of the discrete Cosserat eigenvalues @ ,, eigenvectors u, and divergences div u,, are

@, =2 (52)
_ An n+1 2
u, = 2l (1 - r—g>(cos nbe, — sin nbey) (53)
2 1 r
V.u,= An<}£> cos nf) (54)
0
and
(I)n =-2 (55)
_ AI n+1 2
0, = Anl (1 — r—g>(sin nbe, + cos nbey) (56)
2 1 r
Vi, = A(}’—) sin 10 (57)
0
wheren=1,2,..., and
1
a2="" (58)
g

It is not difficult to show that the choice V-u, = 1 does not generate another Cosserat eigenfunction.

4. A cylindrical rigid inclusion

If r, =ry and r, = 0o, the cylindrical shell reduces to a cylindrical rigid inclusion with radius ry. In
this case, only the functions r~" cosnf, r~"sinnf are needed. The sets of the discrete Cosserat
eigenvalues @ ,, eigenvectors u, and divergences div u,, are

p=—2 (59)

- B, r} r .

i, = 71/”21 (1 — r—?)(cos nle, + sin nley) (60)
7 n

V-u, =Bn<—0) cos nf (61)
r

and

(62)

S
=
Il
|
[V}
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. B n 2
u,=— rE (1 - r—0>(sin nbe, — cos nley) (63)
AL 1 r2
Vi, = Bn<rl—?> sin 10 (64)
where n = 2, 3,..., and
n—1
B = 65
= (65)

5. Discussion

For a cylindrical shell, we obtained eqn (33) for the discrete spectrum @, and eqn (34) for A,/B,.
These equations are quadratic, therefore, there are two solution of @ ,, ®,< —2 and @ ,> — 2 and two
solutions of 4,/B,, 4,/B, < 0 and A4,/B,>0, for each value of r;/r,. Eqn (32) shows that 4, and B,
should have the same sign if @ ,< — 2, or vice versa.

We rewrite the discrete Cosserat eigenvalues in the form

) 2 ,
= 1 =
RS BV

where the positive and negative sign apply when i = 1 and i = 2, respectively and

@

1,2 (662)

L= (ri/r)’
Si=- 3 (66b)
[1+ (r1/r2)* ] Tog(r1/r2)

Table 1
The discrete Cosserat spectrum @ ,(71) for a cylindrical shell
n 1‘1/7‘2:0.0001 r1/1‘2=0.001 71/1‘220.01 rl/r2:0.1 rl/r2:0.2
1 —2.98287136 —3.22830241 —3.74492566 —5.75461322 —8.24144796
2 —2.00034647 —2.00347011 —2.03524980 —2.41644234 —3.02765208
3 —2.00000006 —2.00000056 —2.00056579 —2.05761916 —2.24391020
4 —2.00000000 —2.00000001 —2.00000775 —2.00769803 —2.06131477
5 —2.00000000 —2.00000010 —2.00097047 —2.01516379
6 —2.00000000 —2.00011715 —2.00364146
7 —2.00001372 —2.00085170
8 —2.00000157 —2.00019508
9 —2.00000018 —2.00004396
10 —2.00000002 —2.00000978
11 —2.00000000 —2.00000215
12 —2.00000047
13 —2.00000010
14 —2.00000002

15 —2.00000000
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Table 2
The discrete Cosserat spectrum @ f,2> for a cylindrical shell

n 1'1/r2 =0.0001 1‘1/}’2 =0.001 I‘]/Vz =0.01 I‘]/I‘z =0.1 1‘1/7‘7_ =0.2

1 —1.50431915 —1.44877212 —1.36430859 —1.21032205 —1.13809393
2 —1.99965365 —1.99654189 —1.96595044 —1.70599415 —1.49318126
3 —1.99999994 —1.99999434 —1.99943453 —1.94551994 —1.80391655
4 —2.00000000 —1.99999999 —1.99999225 —1.99236078 —1.94222754
5 —2.00000000 —1.99999990 —1.99903047 —1.98506272
6 —2.00000000 —1.99988287 —1.99637175
7 —1.99998628 —1.99914902
8 —1.99999843 —1.99980495
9 —1.99999982 —1.99995604
10 —1.99999998 —1.99999022
11 —2.00000000 —1.99999785
12 —1.99999953
13 —1.99999990
14 —1.99999998
15 —2.00000000

D (r1/r)*"[(r1 /r2)* +(r1 fr)) > 2]
[1 _ (’,1/r2)2(}1+1)]|:1 _ (rl/rz)z(nfl):l

The discrete Cosserat spectrum for a cylindrical shell is a full spectrum from both cb,(ql)g — 2 and
OP> -2 As n—o0, @ -2 and @'P— —2. There are infinite eigenvalues that approach the
condensation point @ = —2. The discrete spectrum (Z),(:) and c?)ff) represented in eqn (66) with different
values of r1/r, are calculated to the accuracy 10~°. Results are shown in Tables 1 and 2.

At two limiting cases, r;1—0 (solid cylinder) or r,—oo (cylindrical rigid inclusion), the Cosserat
discrete spectrum reduces to a condensation point @, = —2 with infinite multiplicity.

f=? = £ 1 (66¢)
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